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Abstract 

Population invariance is an important requirement of test equating. An equating function is said 

to be population invariant when the choice of (sub)population used to compute the equating 

function does not matter. In recent studies, the extent to which equating functions are population 

invariant is typically addressed in terms of practical significance and not in terms of the equating 

functions’ sampling variability. 

This paper shows how to extend the framework of kernel equating to evaluate population 

invariance in terms of statistical significance. Derivations based on the kernel method’s standard 

error formulas are given for computing the standard errors of the root mean square difference 

(RMSD) and of the simple difference between two subpopulations’ equated scores. An 

investigation of population invariance for the equivalent groups design is discussed. The 

accuracy of the derived standard errors is evaluated with respect to empirical standard errors. 

This evaluation shows that the accuracy of the standard error estimates for the equated score 

differences is better than for the RMSD and that accuracy for both standard error estimates is 

best when sample sizes are large. 
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Introduction 

Population invariance is an important requirement of test equating, the process of 

adjusting the scores of test forms so that they are comparable (Angoff, 1971; Dorans & Holland, 

2000; Kolen & Brennan, 1995; Lord, 1980; Peterson, Kolen, & Hoover, 1989). An equating 

function is said to be population invariant when the choice of (sub)population used to compute 

the equating function does not matter. The extent to which equating functions are population 

invariant is commonly addressed in terms of differences that matter (Dorans, Holland, Thayer, & 

Tateneni, 2004; Yang, 2004; Yin, Brennan, & Kolen, 2004), that is, the differences in equated 

scores that are greater than would be corrected by the score rounding that occurs before score 

reporting (Dorans & Feigenbaum, 1994). The differences-that-matter criterion indicates the 

practical, rather than the statistical, significance of equating function differences. 

The focus of this paper is on incorporating equating functions’ sampling variability into 

population invariance measures in order to evaluate population invariance with respect to 

statistical significance. The approach taken in this paper is based on the delta method, which is 

different from other approaches, including those that have conducted significance tests of scale 

score distribution differences (Segall, 1997), drawn random samples to estimate standard errors 

of equating functions (Angoff & Cowell, 1986), and utilized bootstrap resampling for item 

parameter estimates (Williams, Rosa, McLeod, Thissen, & Sanford, 1998). In this paper, 

derivations are given for computing theoretical standard errors of the root mean square 

difference (RMSD; Dorans & Holland, 2000) and the standard error of the simple difference 

between two independent subpopulations’ equated scores. These derivations are intended to be 

applied using the kernel method of observed score equating (von Davier, Holland, & Thayer, 

2004; Holland & Thayer, 1989). The kernel method is an equating method with a framework that 

is general enough to consider population invariance at each explicit step of the equating process, 

across linear and curvilinear equating functions, and across all of the major equating designs.  

The outline of this paper is as follows. First, the steps of kernel equating are reviewed and 

extended for the computation of subpopulations’ and populations’ equating functions, population 

invariance measures, and their standard errors. Next, an example of an investigation of 

population invariance for the equivalent groups design is given. This example is used to 

demonstrate and evaluate the proposed standard errors. Finally, the implications of this 
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investigation and applications of the derivations used in this paper to evaluating population 

invariance for other equating designs are discussed.  

Equivalent Groups Kernel Equating and Extensions for Population 

Invariance Measures 

Kernel equating is a unified approach to test equating based on a flexible family of 

curvilinear and linear equating functions (von Davier et al., 2004; Holland & Thayer, 1989). 

While the kernel method can be used to compute equating functions based on any of the major 

data collection designs, the focus of this paper is on linking functions computed from the 

equivalent groups data collection design (reviewed next). In this section, the five steps of the 

kernel method are summarized for the equivalent groups design. Extensions of these steps are 

given for the consideration of population invariance in linking functions that provide (a) a 

significance test of the difference between two subpopulations’ linking functions and (b) the 

standard error for the RMSD measure. 

The Equivalent Groups Design 

The equivalent groups design is a data collection design where two independent random 

samples are drawn from a common population of examinees, P, and one sample is administered 

test X and the other sample is administered test Y. Table 1 shows the population, samples, and 

tests administered in the equivalent groups design.  

The assumptions of the X-to-Y equating are the following: 

1. There is a single population P of examinees who could take either test. 

2. The two samples are independently and randomly drawn from the common 

population of examinees, P. 

Table 1 

The Equivalent Groups Data Collection Design 

Population Sample Test X Test Y 

P 1 √  

P 2  √ 
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When the equivalent groups design is extended to a consideration of subpopulations of 

the samples who take tests X and Y, the assumptions of the design are also extended. Table 2 

shows the equivalent groups design when there are G subpopulations making up population P. 

The assumptions made in the equivalent groups design for the X-to-Y equatings for P1,…,PG 

adds a third assumption: 

3. The G subpopulations are mutually exclusive and independent. 

Table 2 

The Equivalent Groups Data Collection Design for G Subpopulations 

Population Sample and 
subpopulation 

Test X Test Y 

P P1
P2
. 
. 

PG

√ 
√ 
√ 
√ 
√ 
 

 

P P1
P2
. 
. 

PG

 √ 
√ 
√ 
√ 
√ 

The assessment of the population invariance equating assumption using population 

invariance measures is an empirical evaluation based on comparing the X-to-Y equated scores for 

P1,…,PG and P. The five steps of the kernel method and their extensions to consider population 

invariance are now summarized for the equivalent groups design. 

Step 1: Presmoothing, Kernel Equating 

Estimates of the univariate score distributions and the C-matrices, the factorization 

matrices of the covariance matrix of the estimated distributions, are obtained by fitting loglinear 

smoothing models (Holland & Thayer, 1989, 2000) to the raw data obtained by the data 

collection design. For the equivalent groups design, two loglinear smoothing models are used to 

preserve a number of moments, TX and TY, from the observed distributions of each separate test, 

3 



X and Y, respectively. These loglinear smoothing models produce estimated univariate 

distributions, R  and S , and their corresponding root covariance C-matrices,  and , for X 

and Y in the total population P. For an equivalent groups design and an X with J possible score 

values and a Y with K possible score values, the dimensions of 

RC SC

R  and S  are J-by-1 and K-by-1 

and the dimensions of  and  are J-by-TRC SC X and K-by-TY. 

Population Invariance Measures Extension of Step 1  

When kernel equating is extended to a population invariance study, two loglinear 

smoothing models for each subpopulation’s X and Y score distributions are needed to obtain PgR  

and PgS , and and  for all G. Since the total population’s X and Y distributions are 

functions of the subpopulations’ distributions under the third assumption, smoothing models for 

the total population are not necessary. The justification of the separate smoothing models and 

outputs follows from the assumption of independent subpopulations, who consequently do not 

share the parameters of their respective smoothing models with those of any other subpopulation.  

RPgC SPgC

Step 2: Estimation of the Score Probabilities, Kernel Equating 

In Step 2, a column vector of estimated score probabilities ( r  and s ) is obtained from 

the estimated score distributions ( R  and S ) through a design function. For the equivalent 

groups design, the estimated score probabilities are equal to the estimated score distributions 

( r = R , s = S , , and ). Therefore, the design function is the identity function 

and hence, the matrix of derivatives of the design function with respect to the score probabilities, 

, is an identity matrix for X’s J-total score probabilities (I

=rC CR S=sC C

DFJ J) and another identity matrix for 

Y’s K-total score probabilities (IK). For other equating designs, the design function and its 

derivative matrix ( ) involve additional computations for the other equating designs because 

for other equating designs, 

DFJ

r  and s  are not equal to R  and S . 

Population Invariance Measures Extension of Step 2 

For the extension to the population invariance measures, the estimated score probabilities 

from the smoothed distributions must be produced for each of the G subpopulations and, for the 

RMSD measure, also for the overall population. For each subpopulation, the score probabilities 
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are estimated from the smoothed distributions in exactly the same way as they are for kernel 

equating, which is simply through the design function. Once these subpopulation score 

probabilities are produced, the overall population score probabilities can be estimated as explicit 

functions of the subpopulation samples and score probabilities (Assumption 3): 

=
∑

∑

G

XPg jPg
g

jP G

XPg
g

n r
r

n
,  (1) 

=
∑

∑

YPg kPg
g

kP G

YPg
g

n s
s

n

G

Prob{ | }= =

,  (2) 

jPg j gr X x P

Prob{ | }= =

, 

kPg k gs Y y P ,  

XPgn  is the total number of examinees taking test X in subpopulation Pg, and  is the total 

number of examinees taking test Y in subpopulation P

YPgn

g. 

Step 3: Continuation, Kernel Equating 

In Step 3, continuous approximations, ( )hXF x  and ( )hYG y , to the estimated discrete 

cumulative density functions (cdfs), ( )F x  and ( )G y  are determined using Gaussian kernel 

smoothing (Ramsay, 1991). This step involves a choice of the bandwidth parameters, hX and hY. 

von Davier et al. (2004) suggested two criteria for selecting the bandwidth parameters: (a) the 

bandwidth parameters should produce probability density functions that closely match the 

smoothed discrete probabilities, and (b) the bandwidth parameters should produce probability 

density functions that do not have many modes.  
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Population Invariance Measures Extension of Step 3  

The continuous cdf approximations ( )hXF x  and ( )hYG y are determined for each 

subpopulation’s cumulative distribution (cumulated Equations 1 and 2) by selecting 

subpopulation-specific bandwidth parameters hXPg and hYPg for ( )hXPgF x  and ( )hYPgG y , and also 

for the population-specific bandwidth parameters hXP and hYP for ( )hXPF x  and ( )hYPG y . Each cdf 

approximation is based on the corresponding subpopulation or population score probabilities 

estimated in Step 2. 

Step 4: Equating, Kernel Equating 

The estimated equating function is formed from the continuous cdfs, ( )hXF x  and ( )hYG y , 

using the following formula: 1( ) ( ( ))Y hY hXe x G F x−= . 

Population Invariance Measures Extension of Step 4 

Equating functions are computed for each subpopulation as 1( ) ( ( ))YPg hYPg hXPge x G F x−= . 

The equating function is also computed for the total population as 1( ) ( ( ))YP hYP hXPe x G F x−= .  

The RMSD can now be computed to measure the extent to which subpopulations’ X-to-Y 

equated scores differ from the total population’s equated scores at specific values of X (xj, j = 0 

to J): 

2[ ( ) ( )]
( )

−

=
∑ g YPg j YP j

g
j

YP

w e x e x
RMSD x

σ
. (3) 

For the RMSD, g defines one of the G total subpopulations (Pg) of the total population P 

( ), w
G

g
g

P =∑ P g is the relative proportion of subpopulation Pg in the total population 

(
∑ ∑

XPg YPg
g G G

XPg YPg
g g

n + n
w =

n + n
), eYPg(xj) is the linking function for X to Y for a particular score on X (xj) 

in subpopulation Pg, eYP(xj) is the linking function for X-to-Y for score (xj) in the total population 
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P, and σYP is the standard deviation of the Y scores in the total population P 

( 2( )= −∑YP k YP kP
k

y sσ µ ).  

Differences in two subpopulations’ equated scores may also be of interest, 

1 2( ) ( )−YP YPe x e x , particularly if differences in subpopulations’ equated scores are regarded as 

more serious than the differences of subpopulations’ equated scores to the total population’s 

equated scores measured by the RMSD. 

Step 5: Calculating the Standard Error of Equating, Kernel Equating 

The delta method is used to compute a large-sample approximation of the standard error 

of equating (Bishop, Feinberg, & Holland, 1975; Kendall & Stuart, 1977). The delta method can 

be summarized by saying that if a vector of parameter estimates ( nθ ) is distributed 

approximately as N(0,Σ(θ)) when the variance-covariance matrix Σ(θ) is small, then a function of 

these parameter estimates, R( nθ ), has an approximate N(0,∂R/∂θΣ(θ)∂R/∂θt) distribution (von 

Davier et al., 2004, p. 198). For kernel equating, the loglinear smoothing output corresponds to 

( nθ ), the C-matrix is the factorization of Σ(θ), and the design and equating functions are R( nθ ). 

Therefore, the standard error of equating reflects the smoothed distributions, the conversion of 

the smoothed distributions into score probabilities, and the bandwidth-dependent equating 

functions. For the equivalent groups design: 

( ) , ,Y Y Y Y
Y

e e e eSEE x

∂⎛ ⎞
⎜ ⎟ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠∂∂ ∂ ∂ ∂ ⎝ ⎠⎜ ⎟
⎝ ⎠∂

R
r

s
S

C 0 C 0
0 C0 C

r          R
      sr s r s          

S

⎟ ,  (4) 

where ,
r s

∂ ∂⎛
⎜⎝ ∂ ∂

Y Ye e ⎞
⎟⎠

⎟

 are the partial derivatives of the equating function with respect to the score 

probabilities of X and Y, and  is made up of the two C-matrices,  and , computed 

in Step 1. In (4), 

⎛ ⎞
⎜⎝ ⎠

r

s

C 0
0 C

    
      rC sC

2
j

j

x x= ∑  denotes the Euclidian length (norm) of vector x. 
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Population Invariance Measures Extension of Step 5 

Significance test for two subgroups’ equating functions. When loglinear smoothing 

models and equating functions are computed for independent subpopulations, the differences 

between their equated scores can be evaluated with respect to a standard error of equating 

difference (SEED). The SEED used in this paper differs from what was proposed in von Davier 

et al. (2004) because the equated score differences evaluated in this paper are of independent 

subpopulations (where the C-matrices are not shared) rather than of linear and curvilinear 

equating functions (where the C-matrices are common). The SEED used in this paper is the 

square root of the sum of each subpopulation’s squared standard errors of equating (SEE; see 

Appendix A). 

2 2

1 1 2 2

1 2

( ) , ,

( ) ( )

P1 P1 P2 P2r s r s
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛∂ ∂ ∂ ∂

== +⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

= +

rP1 rP2

sP1 sP2

C  0 C  0
0     C 0      C

YP YP YP YP
Y

YP YP

e e e e
SEED x

Var e Var e

⎞
⎟⎠

 (5) 

Thus, the SEED is not unique to the kernel method, but can be, and has been (Harris & 

Kolen, 1986, p. 40), computed based on the standard errors of any equating function by noting 

that the standard error of the difference of the equating functions of two independent 

subpopulations is the square root of the sum of each equating function’s variance evaluated at 

each score of X. 

The standard error of the RMSD, RMSDSE. The RMSD measure gives a value based on 

a particular X score that is a function of the estimated probabilities in the subpopulations and 

population ( ( )P1 P2 PG P1 P2 PGr ,r , ...,r ; s , s , ..., sRMSD x; ). The formula for the standard error for the 

RMSD (RMSDSE) can be written in a form that is general enough to apply to all of the major 

equating designs. This formula includes the derivatives of the RMSD and subpopulation 

equating functions with respect to all Pg X and Y score probabilities, derivatives of all Pg X and Y 

score probabilities with respect to the estimated (smoothed) distributions, and the factorized 

variance-covariance matrices of all Pg estimated distributions: 
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[ ]

( )

,...., , ,...,

,...., , ,...,

P1 PG P1 PG

P1 PG P1 PG

r r s s

               
               

.........................
         

r r s s

=

⎡ ⎤∂ ∂ ∂ ∂
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⎡ ⎤∂ ∂ ∂ ∂
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rP1
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J C

C 0 0
0 C 0

0

RMSDSE x

RMSD RMSD RMSD RMSD

RMSD RMSD RMSD RMSD

        .....      
        ........   

.......................
        .........     .......   
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⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

sP1
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C 0 0
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0 0 0 0 0 C

 (6) 

The derivatives of RMSD with respect to the Pg X and Y score probabilities are given in 

Appendix B. An accompanying paper will capitalize on the generality provided by von Davier et 

al.’s (2004) development of , and show how the RMSD standard errors can be computed in 

population invariance studies using data collection designs other than the equivalent groups design. 

DF PgJ C

Example 

In this section, the previously described population invariance measures and standard 

errors are demonstrated and evaluated using actual test data. The data were obtained in a special 

study where two 42-item exam forms were given to high school students in a spiraled 

administration. The content of the exam was English literature. These data were used to assess 

the extent of population invariance in the equating function for the two exam forms. The 

subpopulations of interest were examinees from schools that were not in large cities (P1) and 

examinees from schools that were in large cities (P2). Table 3 presents the summary statistics for 

the population and subpopulations based on number-correct scores. The statistics in Table 3 

show that the large sample of P1 examinees did better on the X and Y forms than did the smaller 

sample of P2 examinees. In addition, the P1 examinees did slightly better on the X form than on 

the Y form while the P2 examinees did slightly better on the Y form than on the X form. 
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Table 3 

Descriptive Statistics of the Subpopulations and Population 

Subpopulations and  
population 

Test N Mean Std. 
dev. 

Skew Kurtosis 

P1 X 973 24.89 6.65 .07 -.47 

P1 Y 958 24.85 6.45 .02 -.21 

P2 X 296 23.87 7.39 -.15 -.45 

P2 Y 294 23.92 7.25 -.07 -.54 

P (= P1 + P2) X 1,269 24.65 6.84 .01 -.35 

P (= P1 + P2) Y 1,252 24.63 6.66 -.03 -.17 

Kernel Equating, Steps 1-4 

Loglinear smoothing models were fit to the four subpopulations’ score distributions. The 

model selection process was to consider the relative fits of five models that preserved 2 through 

6 moments using four likelihood ratio chi-square tests with alpha levels of 1-(1-.05)1/4 = .0127 

(Haberman, 1974). The selected models for X and Y in P1 both preserved 6 and 5 moments and 

had likelihood ratio statistics of 17.11 (df = 36, p > .05) and 27.58 (df = 37, p > .05), 

respectively. The selected models for X and Y in P2 preserved 2 moments and had likelihood 

ratio statistics of 26.16 (df = 40, p > .05) and 49.84 (df = 40, p > .05), respectively. The score 

probabilities were obtained directly from the smoothed frequencies. 

Continuous cdfs were estimated based on the discrete and smoothed score distributions of 

the four subpopulation score distributions and two population (P1 + P2) score distributions. A 

parabolic interpolation procedure (Press, Teukolsky, Vetterling, & Flannery, 1992) was used to 

select Gaussian kernel bandwidths that minimized the extent to which the continuous 

distributions deviated from the loglinear smoothed distributions, while having very few modes.  

Finally, the X-to-Y kernel equating functions for P1, P2, and P were computed, along 

with the RMSD. Figure 1 plots the equated score differences (P1 - P2), along with practical 

differences-that-matter lines of +/- .5 score points. Figure 2 plots the RMSD, along with a 

practical difference-that-matters line of .5/σYP. The figures indicate that population dependence 
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in the X-to-Y equating function is serious enough to create practically important differences 

between the subpopulations’ equating functions (Figure 1) and between each of the 

subpopulation’s and the population equating functions (Figure 2) for scores X = 0 through 9. 

Step 5: Standard Errors, Delta Estimates 

The population invariance measures were evaluated with respect to statistical 

significance. Figures 3 and 4 plot the equated score differences and the RMSD values, along 

with the differences-that-matter lines and +/- 2 times the delta method standard errors. Figures 3 

and 4 indicate that the equated score differences and RMSD values are statistically significant for 

scores X = 0 through 6. Both figures indicate that the population invariance measures become 

extremely variable around score X = 7, a score point where the data are unusually sparse relative 

to the frequencies suggested by the loglinear smoothing models. The estimated variability of the 

RMSD values is directly determined by the magnitude of the equated score differences (see 

Appendix B), which accounts for the abrupt decreases in its standard error at scores X = 19 and 

22, the X scores with the smallest equated score differences. 

Evaluating the Accuracy of the Delta Standard Errors 

The delta method standard error estimates were evaluated with respect to empirical 

variability. Two hundred datasets for three sample size conditions were simulated from each of 

the loglinear smoothing models selected for the four univariate distributions. For one sample size 

condition, the four sample sizes of the original data were used (NXP1 = 973, NYP1 = 958, NXP2 = 

296, NYP2 = 294). For the other two sample size conditions, the four distributions were generated 

with equal sample sizes of 300 and 1,000. The kernel equating functions were then computed for 

each of these datasets and the same smoothing models and bandwidth parameters that were 

selected with the actual data. Averages of the 200 delta method standard errors were then 

computed and evaluated with respect to the standard deviations of the population invariance 

measures. This evaluation provided an estimate of empirical variability while adhering to the 

assumptions of the delta method (i.e., the assumptions that the loglinear models are the true 

models and that the same smoothing models and bandwidth parameters are used across all 

replications).  
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Figure 3. X-to-Y equated score differences. 
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Figures 5, 6, and 7 plot the equated score differences and +/- two times the average of the 

delta method standard error estimates and +/- two times the empirical standard deviations. These 

three figures show fairly close agreement between the delta method standard error estimates and 

the empirical standard deviations. The delta method estimates are closest to the empirical 

standard deviations for the sample size condition of N = 1,000 for all four distributions 

(Figure 7). In Figure 5 (NXP1 = 973, NYP1 = 958, NXP2 = 296, NYP2 = 294) and Figure 7 (N = 

1,000), the equated score differences at X = 0 through 6 are statistically significant based on the 

average delta method standard errors and also on the empirical standard deviations. In Figure 6, 

(N = 300), none of the equated score differences are statistically significant based on the average 

delta method standard errors and on the empirical standard deviations. 

SEED Evaluation Based on 200 Simulated Datasets 
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Figure 5. SEED evaluation based on 200 simulated datasets. 
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Figure 6. SEED evaluation based on 200 simulated datasets. 
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Figure 7. SEED evaluation based on 200 simulated datasets. 
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Figures 8, 9, and 10 evaluate the variability estimates of the RMSD. The RMSD depends 

on the differences in populations’ sample sizes (3), so the reader should note that the RMSD 

values based on the sample sizes in the observed data (Figures 2, 4, and 8) differ from the RMSD 

values based on equal sample sizes in all four distributions (Figures 9 and 10). Figures 8, 9, and 

10 show that the average delta method standard errors consistently overestimate the RMSD’s 

empirical variability. The differences between the delta method’s standard errors and the 

empirical standard deviations are greatest when the four univariate distributions are based on 

sample sizes of 300 (Figure 9). For Figure 9, none of the RMSD values are statistically 

significant based on the average delta method standard errors, while the RMSD values at scores 

X = 3 through 5 are statistically significant (but barely) based on the empirical standard 

deviations. For Figure 8 (NXP1 = 973, NYP1 = 958, NXP2 = 296, NYP2 = 294) and Figure 10 (N = 

1,000), the delta method standard errors are sufficiently close to the empirical standard 

deviations so that they agree on which RMSD values are statistically significant (X = 0 through 

6) and insignificant (X = 7 through 42). 

RMSDSE(x) Evaluation based on 200 Simulated Datasets
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Figure 8. RMSDSE(x) evaluation based on 200 simulated datasets. 
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RMSDSE(x) Evaluation based on 200 Simulated Datasets
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Figure 9. RMSDSE(x) evaluation based on 200 simulated datasets. 

RMSDSE(x) Evaluation based on 200 Simulated Datasets
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Figure 10. RMSDSE(x) evaluation based on 200 simulated datasets.  
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Discussion 

This paper demonstrates how equating functions’ sampling variabilities can be estimated 

and incorporated into evaluations of population invariance. The kernel method and its delta 

method standard errors were extended to compute the standard errors of differences between 

subpopulations’ equating functions and standard errors of the RMSD. These standard errors were 

demonstrated on actual test data and evaluated in terms of equating function variability from data 

that were simulated from the same conditions as the actual data. The delta method standard error 

estimates of equated score differences more closely approximated actual sampling variability 

than did the delta method standard error estimates of the RMSD. The delta method estimates for 

the equated score differences and the RMSD were closer to actual variability when the equating 

functions were computed based on large, rather than small, sample sizes, which was expected 

from the literature (Jarjoura & Kolen, 1985; Liou & Cheng, 1995; Liou, Cheng, & Johnson, 

1997). The delta estimates would not have been expected to work as well had they been 

evaluated with respect to other equating decisions, such as the selection of the appropriate 

loglinear model and/or bandwidth parameter. These additional decisions are not incorporated in 

the delta method estimates, but are certainly relevant to the decisions made in practice that add 

variability to all aspects of equating. 

Many extensions of this work are possible. Because the derivations given in this paper 

utilize the kernel method’s general framework, the computation of the standard errors for 

population invariance measures in all of the major equating designs are straightforward. 

Population invariance evaluations in the single group, counterbalanced, and non-equivalent 

groups with anchor test designs are more complex than in the equivalent groups design because 

they are based on bivariate frequency tables of highly correlated tests that are usually sparse and 

require more complicated loglinear models and model search strategies. In addition to extending 

this work to other equating designs, wide ranges of sample size, degrees of true and false 

population invariance, and situations with more than two subpopulations could also be 

considered. These extensions would be informative for investigations of population invariance 

that commonly evaluate population invariance with respect to practical, rather than statistical, 

significance. 
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Appendix A 

The Standard Error of Equating Difference for Independent Subgroups’ Equating 

Functions (Equivalent Groups Design) 

Let the two subgroups be P1 and P2. 

Let the row vector of partial derivatives of the equating function with respect to the score 

probabilities of X and Y for each subpopulation be: 
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For the equivalent groups design, the product of the design function and C-matrices for 
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Therefore, the SEED between independent subpopulations’ equating functions is 

Then based on the delta method, 
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Appendix B 

Derivatives of the RMSD with Respect to the Score Probabilities 

The Derivative of RMSD With Respect to jPgr . 
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By the chain rule, 
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 can be computed from equations given in Holland, King, and Thayer (1989) and in von Davier et al. 

(2004).  

The Derivative of YPσ  With Respect to kPgs . 

The derivative of RMSD with respect to ,k Pgs  first requires the differentiation of YPσ  with respect to ,k Pgs  and then an 

application of the quotient rule.  
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To obtain the derivative with respect to ,k Pgs , we apply the chain rule and multiply by the derivative of kPs  with respect to kPgs : 
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The Derivative of RMSD With Respect to kPgs . 
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